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REPRESENTING SUMS OF FINITE PRODUCTS OF
CHEBYSHEV POLYNOMIALS OF THE SECOND KIND AND
FIBONACCI POLYNOMIALS IN TERMS OF CHEBYSHEV
POLYNOMIALS

TAEKYUN KIM, DMITRY V. DOLGY, AND DAE SAN KIM

ABSTRACT. In this paper, we will consider sums of finite products of Cheby-
shev polynomials of the second kind and Fibonacci polynomials. Then we
represent each of those sums of finite products in terms of the four kinds of
Chebyshev polynomials which involve the Gauss hypergeometric function
oF .

1. Introduction and preliminaries

For any nonnegative integer n, the falling factorial polynomials (x),, and the
rising factorial polynomials < x >,, are respectively given by

@) =z(—-1) - (z—n+1), (n>1), ()9 =1, (1.1)

<z>p=z(@+1)---(z4+n-1), (n>1), <z >e=1 (1.2)

The Gauss hypergeometric function o F(a, b; ¢; x) are defined by

oo

2Fi(a,bice) =)

n=0

<a>p<b>,an
—_——, (Jz| < 1). 1.3
<c>, n! (12 ) (1.3)
As to the classical orthogonal polynomials we only need some basic knowledge
about Chebyshev polynomials which we will recall here in below. For full ac-
counts for this fascinating area of mathematics, the interested reader may refer
to [2,3,13].
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The Chebyshev polynomials of the first, second, third and fourth kinds, and
Fibonacci polynomials are respectively defined by the following recurrence rela-
tions.

Thsa(2) = 22T (x) — To(2), (n20), To(x) =1, Ti(z) =z, (1.4)
Unt2(x) = 20Un41(2) — Un(z), (n 20), Up(z) =1, Ur(x) = 2z, (1.5)
Vira(x) = 22V 1 (x) — Vi (2), (n>0), Vo(z) =1, Vi(x) =22 — 1, (1.6)
Wita(2) = 22Wo i1 (2) — Wa(2), (n 2 0), Wo(z) = L Wi(z) =22+ 1, (1.7)
(

Frio(x) = 2Fyi1(z) + Fo(x), (n>0), Fy(z) =0, Fi(x)=1. 1.8)

In terms of generating functions, they are respectively given by

1—uat
T—2at+2 ZT (@), (1.9)
F(t,z) = 2xt+t2 ZU ()", (1.10)
n=0
1—t N
1T—2at +£2 ZV" (@), (L.11)
n=0
1+t .
T o ZW,L )", (1.12)
G(t .I') 1— 2t — t2 Z Fn+1 . (113)

The Chebyshev polynomials of the first, second, third and fourth kinds, and
the Fibonacci polynomials are explicitly expressed respectively by the following.

2]
=0
Un(z) = (n+ 1)2F1(—n,n + 2; 37 —)
%]
=S (-1 <" . l) 2z)" 2, (n > 1), (1.15)
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Va(z) = oFi(—n,n + 1; 3; 45%)
_ n (n-l—l>2l(x_1)l7 (n>0), (1.16)

Wa(z) = (2n+ 1)2F (—n,n + 1; 3; 15%)

n

2n+1)22l+1<“’”>(k1)l, (n>0), (117

(3]

F(z) =Y <" . l) 2" (0> 0). (1.18)

1=0
It is well known that the Chebyshev polynomials are also given by the Ro-
drigues’ formulas.

To(x) = %( —aE (- 332),1,,%7 (1.19)
Un(z) = %( 2% d e (1.20)
(1—2)~ 51 +2)}Vu(a) = %%(1 o)t (121)
(1= )3 (14 2) EWa(z) = %%(1 a1+ (1.22)

Probably, the most important characteristic of Chebyshev polynomials is their
orthogonalities with respect to various weight functions which are given by the
following.

1

/ (1 — 22)" 2T (2) Ty (2)de = glo (1.23)
—1 n
1

/ (1 =) U (@)Vin ) = T, (1.24)
-1
1 N\ 3

/ (1 * “L> Vo (2) Vi () = 703, (1.25)
1 1—=x ’

/1 1-w %W()W()d— 5 (1.26)
o \I+a n\L)Wm X )AL = TOn m, .

where

1, ifn= if
5n={ , ifn=0, S = {O, if n # m, (1.27)

2, ifn>1, 1, ifn=m.
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Let us put
Oén,’l'(w) = Z Ui1 (J)U'Lz (LL) e Uirr-+1 (1)7 (n7 "z O)’ (128)
i1 +int i p1=n
B (z) = Z Fiy (@) Fiypa(z) - Fi (), (n> 0,7 >1). (1.29)

i1+ig+-Fir=n

Note here that both «, ,(z) and 8, ,(«) have degree n.

In this paper, we will consider the sums of finite products of Chebyshev poly-
nomials of the second kind in (1.28) and those of Fibonacci polynomials in (1.29).
Then we will express each of a, (z) and 8,,.(z) as linear combinations of the
four kinds of Chebyshev polynomials T, (x), Uy (2), Vi, (), and W,,(z). They are
found by explicit computations and using the general formulas in Propositions
3 and 4. They can be derived by making use of orthogonalities, Rodrigues’
formulas and integration by parts.

Our results are as follows.

Theorem 1. Let n,r be integers with n > 0,r > 1. Then we have the following
identities.

Z Uil ('L)Utz ('L) e Ui7,+1 (:L)

i1 Fig+-Fipp1=n

%[Zi]:f—z,( ) =G+ 1) Tn2i() (1.30)
(7

] Z n—2j+1
] Z (T +, : >(” — (347 Vazj(2) (1.32)

e (T D g w0, (1.33)
=0

> _J + 7')7'—1U-7L—2j(flf) (131)

Il

Here [z] denotes the greatest integer < x.

Theorem 2. Letn,r be integers withn > 0,7 > 1. Then the following identities
hold true.
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Y. Fun@Fua(@) - Fioale)
i1+io++ipr=n

n+r—1 [%] .
= ( 2,; En—2j (n> oFi (=4, 7 —nyl—n—r;—4)T,_o;(x) (1.34)
i=0 J
n+r—1 [%]
n . n+1 L.
- 2EL<7L—+ i> 2=t D (" )aFidd = n - 1 (o)
(1.35)
(n+:L—1) n n 7 :
= omn [L] 2F1(_[§]7 [5] - n; 1-n- U _4)‘/”—_](-/1/) (136)
j=0 N2

n+r—1y n n i1 ord
= Sy ()Rl B - mt - n W@ (13

Sums of finite products of Bernoulli, Euler and Genocchi polynomials have
been treated in [1,8,9]. In particular, they are expressed in terms of Bernoulli
polynomials by deriving Fourier series expansions for the functions closely related
to those sums of finite products. Also, the same were done for the sums of finite
products ay, (x) and 3, (z) in (1.28) and (1.29) in [7]. For other applications
of Chebyshev polynomials, one might want to look at [4,10].

2. Proof of Theorem 1

Here in this section we will prove Theorem 1. For this purpose, we first state
two results that will be used in showing Theorems 1 and 2.

The results (a) and (b) in Proposition 3 are respectively from the equations
(24) and (36) of [6], while (¢) and (d) are stated respectively in the equations
(23) and (38) of [5]. All of them can be easily derived from the orthogonality
relations in (1.23)-(1.26) and the Rodrigues’ formulas in (1.19)-(1.22).

Proposition 3. Let ¢(x) € R[z] be a polynomial of degree n. Then we have the
following.
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(@) q(x)= Z Cr1Tk(x), where

_1\koky. k
Ck’lz%/_ al@ )ddk(l_l )2 d.

(b) q(x) = Z Cr2Uk(x), where

(=R P dE okl
Cr2 = —mr i /,1"(“)%(1*‘” de.

() q(x)= Z Cy 3Vi(z), where
k=0

k k 1 k
Cra= g / o) e (1= 21+ ),

(d) ZC’“ aWi(z), where
k=0

(- )kk'Qk/ oy d k+: (1 1 ph—3 g
Cra= o ) q(LL)d,Lk(l x)"T2(1+2)" 2da.

We note here that, for £ = 0, the following integrals are the moments of the
four kinds of Chebyshev polynomials.

Proposition 4. For any nonnegative integers m and k, we have the following.

(a) /1 (1- wz)k_%wmdw

-1

0, ifm=1 (mod 2),
:{ﬁﬁ%m)m, if m =0 (mod 2).
(b) /11(1 - IQ)H%xmdw
0, if m=1 (mod 2),
) {2m+2k+2<7§(+2:I12))!!:%>s(k+1)!v if m =0 (mod 2).
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() /11(1 —o)F i (1 + 2) 2 de

{ (m+1)!(2k)!m ifm=1 (mod 2),

g2kt I(mEL p)Ie m;rl Yik!?

m!(2K)! .
W’%’ if m=0 (mod 2).

(d) /_1 (1—2)* 3 (1 +2)F~22™da

m ! ! .
~ ,2m+2k+(1($f:))!("%)!k!, ifm =1 (mod 2),
= 1(2k)!w )
%, if m =0 (mod 2).

Proof.

m

1 1
(a) / (1= 2 Hamds = 51+ (<1)") / (1= g3ty ™ Ty, (2)

J—1

which is 0 for m odd. So we assume that m is even. Then (2.1) is

D+ 30 +3)  2K)T(3)mIT(3)

T Tk+Z+1) 22RERm(B)I(k+ 2
(b) The follows from (a) by replacing k by k + 1.

(¢) The follows from (a) and (b) by noting

1
/ (1- av)k_%(l + :L')M'%wmdx

-1

1 1
:/ (lfa;z)kféwmdw—l-/ (1*$2)k7%$m+1d1).
J-1

J-1
(d) Similarly to (c), this follows from (a) and (b). O

As was shown in [15] and mentioned in [12], we can show the following lemma
by differentiating the equation (1.10).

Lemma 5. Let n,r be nonnegative integers. Then we have the following identity.

Y @U@ U () = U@, (22

i1+ig+tipp1="n

where the sum is over all nonnegative integers iy, i, -+ ,iry1, With iy +ia+-- -+
ir+1 =n.
From (1.15), the rth derivative of U, (x) is given by

(2571

2

U@ =3 (-1 (n 1 Z) (n = 20), 2" 2", (23)

=0

~
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In particular, we have

3

[’I'

2
I =1 L
U9 (@) = (—1)! <n + 7 >(n 4o Q) g2 2gnk2 (24)
1=0

ks

l

Here we will prove only (1.31) and (1.33) in Theorem 1, as (1.30) and (1.32)
can be shown analogously to (1.31) and (1.33) respectively.
As in (1.28), we put

Oén,r(.’L') = Z Uil (1’)U12(£L’)U1,+1 (CIJ),

i1tio+Fipp1=n

and let

Qp .Z‘) ch 2Uk~ (2.5)
Then, from (b) of Proposition 3, (2.2), (2.4), and integrating by parts k times,
we have
(—1)F2L(k + 1)! /1 &
— r e 1 -
Ck2 Gk 1)ir _lan, (I)dxk( %) T2 dy

_ (DR 4+ 1) ) oy 4 N
T @k + Dimert ) UW( St — o) e

EH(k+ 1! [N ) 2\ k+ 1

= \vrv) o 1— +t3
(2k + 1)!w2rr! /1 Upir ' (@)( %) dx (2.6)
2k (k +1)! 2 n+r—1 ntr—2l

= @kt Dol Z ( I >(” T W

1
X/ (1_11 )k+2‘Ln k— 2ld.L

1

From (2.6), (b) of Proposition 4, and after some simplifications, we obtain

n—k
=
1 n+r—1
CkQ—— Z( 1)( >(n+r—21)r+k
=0 (2.7)
0, if k #n (mod 2),
X ] n—K— : .
(éflllfl)!("%j)ll)!, if k =n (mod 2).
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Before proceeding further, we recall Chu-Vandermonde formula given by

<c—a>,

o (—n,a;¢;1) =
2 1( y Uy &y ) <c>n

, (¢#0,-1,---,1—n). (2.8)

Now, from (2.5), and (2.7), we have

1 [”gk] n+r—1
anr(T) = = Z (-1)! < ; > (n+7r—20)1k
0<k<n =0
k=n (mod2)
(k+1)(n—Fk-—20)!

T

(3] j .
1 (=D (n+r -1
== -2 1)Up— .
7! J:O(n 7+ DUn-aj(@ lz (n—j7—=1+DI(F -l
(3] j
1 2 (n—2j+1)(n+r)! _(w)z‘l:<—j>z<j—n—1>l
= O VT 2 < n—r >l
(3]

1 n—2j+1)(n+7r)! .
== ( J . ) S )QFl(—j,j—TL—l;—TL—T';l)Un_Qj(.Z‘).

! _ !
= (n—j+ 1)y
(2.9)
From (2.8) and (2.9), we finally obtain
1[%] m=2j+1)(n+r)<—r +1>;
v — ) —r—
O‘n,r(l‘) = J 1 I /Un 2]( )
(i (n—j+1)ll<—n—1r>;
1 (3] (n=2j+ 1) (n+r)(r+j-1);
L - iy 2.10
T!JZZ:O (n—j7+ Dl n+r); n-23 (@) (2.10)
(3]

1 . r+5—1 .
D R G e e )

This shows (1.31) and we can prove (1.30) similarly.
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Remark 6. Applying (1.30) and (1.31) to the sth derivatives Tés)(az) and US) (),
we can show that

(23]
s . s+ 1
Tr(z )( ) =n2% ! ZO En_s_ 2]< s i 1 >(IL -7 — l)g,lTn,S,Qj(:L'), (é > 1),
J
(2.11)
[(%57] s4i—1
U (x) = 2° (n—s—2j+1) < s 1 )(n — J)s—1Un—s—25(x), (s >1).
j=0
(2.12)
This agrees with the results in [11].
Next, we show the equation (1.33). We let
(@) = ZCk JWi( (2.13)

Then, from (d) of Proposition 3, (2.2), (2.4), and integrating by parts k times,
we get

(5%
K12k N n+r—1
(2k)tr2rrt Z - < >(n+r_2l)r+k'

X2n+'r‘ 21/ ( l‘)k+ (1+1‘)k_%1‘n_k_21d1‘.
-1

Cra=
(2.14)

From (2.14), (d) of Proposition 4, and after some simplifications, we obtain

nfk'

(=
1 n+4+r—1
Cuam 3 )
=0 (2.15)
o b 2] if k # n (mod 2),

- 2( n+§+1 —l)!( n §+1 —l)! 9
if kK =n (mod 2).

1
(7:42»1\'71)!(1:;%7”!7
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Combining (2.15) and (2.13), and invoking (2.8), we now obtain

(=D'(n+r 1)
(it M —j =D - D)

1 J Y47 —1)!
_ﬁzw’ll?J zzl'
j =0

(n—37—0Y -

(7‘ :]> (=G4 1) Wasj(@) (2.16)

r

1 « (r+ L
= 1 (T e e
This shows (1.33) and (1.32) can be proved similarly.

3. Proof of Theorem 2

In this section, we will show (1.34) and (1.36) of Theorem 2, as (1.35) and
(1.37) can be proved analogously to (1.34) and (1.36) respectively.
We start with the following lemma which is stated as the equation (7) in [14].

Lemma 7. Let n,r be integers with n > 0, r > 1. Then we have the following
identity.

1 _
Y Bn@Feal B = oo @ @)
i1+io+-Fip=n '

where the sum is over all nonnegative integers iy, is, - - - , iy, with iy +ig+- - -+i, =
n.

From (1.18), we note that the rth derivative of F), () is given by

%57
n—1 I
F@ =3 ("] )2 (32)

1=0
Especially, we have

n—k
2

. r—1—1 ,
F75+tk D () = Z <n +r l l >(n =2 — 1) 2R (3.3)
=0
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As in (1.29), we put

Brr(@) = > Fit1(2)Fipsa(2) - Fi o (2),
i1+ig++ip=n

and let

Then, from (a) of Proposition 3, (3.1), (3.3), and integrating by parts k times,

we have
1)F2kk1E, .
Ck,l = Qk '71' / 3,1,7 d k —x ) 2dx
(—1)F2FE1E, oy, d¥ .
:m Fn+r (i)m(1—¢ V2 dg
2k E1Es (r+k—1) A
m/ P - s .
Qkk'g . n+r—I0—1

1
X/ (17;L2)k7_‘Ln k— 2ldL
-1

From (3.5), (a) of Proposition 4, and after some simplifications, we obtain

[25%]
_ E (n+r—101-1)!
Cra = (r—1)l2n > Il
=0 (3.6)
0, if k #n (mod 2),
X 1 .
m, if k =n (mod 2).
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Combing (3.4), and (3.6), we now have

1 ) oo
B"’T(w) = 2n( . 1)[ Z Ek Z n+k _1 | n kg '“Tk(‘L)
! 0<k<n =0 ) ) :
k=n (mod2)
(3] j 1
1 (n+r—1-1H4
2”(7 - 1! Z n=2f Z (n—=101-=7)ly -0l n-2i()
7=0 =
(3]
_ 1 2 c (n+r—1)! zj: n— 5)i(4)14
e e TR P = RO TR
(3]
1 (n+r—1)!
= Ng JWwrr= iy
I A R 24(@)
Zj: < —j>i<j—n> (—4)
P <l—-n-—-7r>; !
(7L+T'71) [%] n
= 2”'” (]) S,L_ngFl(—j,j —n; 1—n-— 5 —4)Tn_2j (.L)
j=0

This shows (1.34) and (1.35) can be proved similarly.
Next, we would like to prove the equation (1.36). For this, we let

B (@) = chgvk (3.8)

Then, from (c) of Proposition 3, (3.1), (3.3), and integrating by parts k times,
we get

n—k
pok L2 ](n+r—l—1
0

Crs = @R)r(r—1)! & l

)(n +7r—20—1)p1g_1
(3.9)

1
X/ (1_3:) (1+$)k+2$n k— 2ld$
-1
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From (3.9), (¢) of Proposition 4, and after some simplification, we obtain

[7: A

n—|—l—l—1)
Crs = 2"(, —1)! Z

, 2 (3.10)
('n-g—,l:-:lk:f)i?_'})i+ll_l)', if k # n (mod 2),
X 2 l. 2 :
DIEE if kK =n (mod 2).
—ON (= =0!
Combining (3.8) and (3.10), we now have
[n l 7 .
X (n+r—1-1)4
/jn,'r'(-L) 2n 7 , Z Vo—1- 2/ lg; L ] —J)'(_} — l)'l’
[”]V L ntr—1-1
2”r—1'z n-2(@ ;n—l—_} N =Dt
(n—H— ) [%]
= > ( )2F1 il == =4V g _oj(x)  (31D)
7=0
(n+'r—1

2]
o Z ( >2F1 —n;l —n—7r;—4)V,_9;(2)
j=0

n+r—1 n . .
Lot Z I o B R R A
nd w

This shows (1.36) and we can prove (1.37) similarly.
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